Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(1): eadi7965, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38170770

RESUMO

Plant secondary cell walls (SCWs) are composed of a heterogeneous interplay of three major biopolymers: cellulose, hemicelluloses, and lignin. Details regarding specific intermolecular interactions and higher-order architecture of the SCW superstructure remain ambiguous. Here, we use solid-state nuclear magnetic resonance (ssNMR) measurements to infer refined details about the structural configuration, intermolecular interactions, and relative proximity of all three major biopolymers within air-dried Populus wood. To enhance the utility of these findings and enable evaluation of hypotheses in a physics-based environment in silico, the NMR observables are articulated into an atomistic, macromolecular model for biopolymer assemblies within the plant SCW. Through molecular dynamics simulation, we quantitatively evaluate several variations of atomistic models to determine structural details that are corroborated by ssNMR measurements.


Assuntos
Populus , Celulose , Espectroscopia de Ressonância Magnética , Biopolímeros , Plantas , Parede Celular
2.
Biotechnol Biofuels Bioprod ; 16(1): 137, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710260

RESUMO

Clostridium thermocellum is a natively cellulolytic bacterium that is promising candidate for cellulosic biofuel production, and can produce ethanol at high yields (75-80% of theoretical) but the ethanol titers produced thus far are too low for commercial application. In several strains of C. thermocellum engineered for increased ethanol yield, ethanol titer seems to be limited by ethanol tolerance. Previous work to improve ethanol tolerance has focused on the WT organism. In this work, we focused on understanding ethanol tolerance in several engineered strains of C. thermocellum. We observed a tradeoff between ethanol tolerance and production. Adaptation for increased ethanol tolerance decreases ethanol production. Second, we observed a consistent genetic response to ethanol stress involving mutations at the AdhE locus. These mutations typically reduced NADH-linked ADH activity. About half of the ethanol tolerance phenotype could be attributed to the elimination of NADH-linked activity based on a targeted deletion of adhE. Finally, we observed that rich growth medium increases ethanol tolerance, but this effect is eliminated in an adhE deletion strain. Together, these suggest that ethanol inhibits growth and metabolism via a redox-imbalance mechanism. The improved understanding of mechanisms of ethanol tolerance described here lays a foundation for developing strains of C. thermocellum with improved ethanol production.

3.
Biotechnol Bioeng ; 120(8): 2253-2268, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37386894

RESUMO

Carbohydrate binding modules (CBMs) are noncatalytic domains that assist tethered catalytic domains in substrate targeting. CBMs have therefore been used to visualize distinct polysaccharides present in the cell wall of plant cells and tissues. However, most previous studies provide a qualitative analysis of CBM-polysaccharide interactions, with limited characterization of engineered tandem CBM designs for recognizing polysaccharides like cellulose and limited application of CBM-based probes to visualize cellulose fibrils synthesis in model plant protoplasts with regenerating cell walls. Here, we examine the dynamic interactions of engineered type-A CBMs from families 3a and 64 with crystalline cellulose-I and phosphoric acid swollen cellulose. We generated tandem CBM designs to determine various characteristic properties including binding reversibility toward cellulose-I using equilibrium binding assays. To compute the adsorption (nkon ) and desorption (koff ) rate constants of single versus tandem CBM designs toward nanocrystalline cellulose, we employed dynamic kinetic binding assays using quartz crystal microbalance with dissipation. Our results indicate that tandem CBM3a exhibited the highest adsorption rate to cellulose and displayed reversible binding to both crystalline/amorphous cellulose, unlike other CBM designs, making tandem CBM3a better suited for live plant cell wall biosynthesis imaging applications. We used several engineered CBMs to visualize Arabidopsis thaliana protoplasts with regenerated cell walls using confocal laser scanning microscopy and wide-field fluorescence microscopy. Lastly, we also demonstrated how CBMs as probe reagents can enable in situ visualization of cellulose fibrils during cell wall regeneration in Arabidopsis protoplasts.


Assuntos
Celulose , Protoplastos , Humanos , Protoplastos/metabolismo , Celulose/metabolismo , Polissacarídeos/metabolismo , Plantas/química , Metabolismo dos Carboidratos
4.
Biotechnol Biofuels Bioprod ; 16(1): 46, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918887

RESUMO

BACKGROUND: Sensitivity to inhibitors derived from the pretreatment of plant biomass is a barrier to the consolidated bioprocessing of these complex substrates to fuels and chemicals by microbes. Spermidine is a low molecular weight aliphatic nitrogen compound ubiquitous in microorganisms, plants, and animals and is often associated with tolerance to stress. We recently showed that overexpression of the endogenous spermidine synthase enhanced tolerance of the Gram-positive bacterium, Clostridium thermocellum to the furan derivatives furfural and HMF. RESULTS: Here we show that co-expression with an NADPH-dependent heat-stable butanol dehydrogenase from Thermoanaerobacter pseudethanolicus further enhanced tolerance to furans and acetic acid and most strikingly resulted in an increase in thermotolerance at 65 °C. CONCLUSIONS: Tolerance to fermentation inhibitors will facilitate the use of plant biomass substrates by thermophiles in general and this organism in particular. The ability to grow C. thermocellum at 65 °C has profound implications for metabolic engineering.

5.
Essays Biochem ; 67(3): 639-652, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36960794

RESUMO

Glycosyltransferases (GTs) are carbohydrate-active enzymes that are encoded by the genomes of organisms spanning all domains of life. GTs catalyze glycosidic bond formation, transferring a sugar monomer from an activated donor to an acceptor substrate, often another saccharide. GTs from family 47 (GT47, PF03016) are involved in the synthesis of complex glycoproteins in mammals and insects and play a major role in the synthesis of almost every class of polysaccharide in plants, with the exception of cellulose, callose, and mixed linkage ß-1,3/1,4-glucan. GT47 enzymes adopt a GT-B fold and catalyze the formation of glycosidic bonds through an inverting mechanism. Unlike animal genomes, which encode few GT47 enzymes, plant genomes contain 30 or more diverse GT47 coding sequences. Our current knowledge of the GT47 family across plant species brings us an interesting view, showcasing how members exhibit a great diversity in both donor and acceptor substrate specificity, even for members that are classified in the same phylogenetic clade. Thus, we discuss how plant GT47 family members represent a great case to study the relationship between substrate specificity, protein structure, and protein evolution. Most of the plant GT47 enzymes that are identified to date are involved in biosynthesis of plant cell wall polysaccharides, including xyloglucan, xylan, mannan, and pectins. This indicates unique and crucial roles of plant GT47 enzymes in cell wall formation. The aim of this review is to summarize findings about GT47 enzymes and highlight new challenges and approaches on the horizon to study this family.


Assuntos
Glicosiltransferases , Plantas , Animais , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Filogenia , Plantas/metabolismo , Proteínas de Plantas/metabolismo , Genoma de Planta , Especificidade por Substrato , Mamíferos/metabolismo
6.
Nat Plants ; 9(3): 486-500, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36849618

RESUMO

Rhamnogalacturonan I (RGI) is a structurally complex pectic polysaccharide with a backbone of alternating rhamnose and galacturonic acid residues substituted with arabinan and galactan side chains. Galactan synthase 1 (GalS1) transfers galactose and arabinose to either extend or cap the ß-1,4-galactan side chains of RGI, respectively. Here we report the structure of GalS1 from Populus trichocarpa, showing a modular protein consisting of an N-terminal domain that represents the founding member of a new family of carbohydrate-binding module, CBM95, and a C-terminal glycosyltransferase family 92 (GT92) catalytic domain that adopts a GT-A fold. GalS1 exists as a dimer in vitro, with stem domains interacting across the chains in a 'handshake' orientation that is essential for maintaining stability and activity. In addition to understanding the enzymatic mechanism of GalS1, we gained insight into the donor and acceptor substrate binding sites using deep evolutionary analysis, molecular simulations and biochemical studies. Combining all the results, a mechanism for GalS1 catalysis and a new model for pectic galactan side-chain addition are proposed.


Assuntos
Galactanos , Glicosiltransferases , Galactanos/metabolismo , Glicosiltransferases/metabolismo
7.
ACS Mater Au ; 2(4): 440-452, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35856073

RESUMO

Xylans are a diverse family of hemicellulosic polysaccharides found in abundance within the cell walls of nearly all flowering plants. Unfortunately, naturally occurring xylans are highly heterogeneous, limiting studies of their synthesis and structure-function relationships. Here, we demonstrate that xylan synthase 1 from the charophyte alga Klebsormidium flaccidum is a powerful biocatalytic tool for the bottom-up synthesis of pure ß-1,4 xylan polymers that self-assemble into microparticles in vitro. Using uridine diphosphate-xylose (UDP-xylose) and defined saccharide primers as substrates, we demonstrate that the shape, composition, and properties of the self-assembling xylan microparticles could be readily controlled via the fine structure of the xylan oligosaccharide primer used to initiate polymer elongation. Furthermore, we highlight two approaches for bottom-up and surface functionalization of xylan microparticles with chemical probes and explore the susceptibility of xylan microparticles to enzymatic hydrolysis. Together, these results provide a useful platform for structural and functional studies of xylans to investigate cell wall biosynthesis and polymer-polymer interactions and suggest possible routes to new biobased materials with favorable properties for biomedical and renewable applications.

8.
Nat Commun ; 13(1): 3870, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790765

RESUMO

Economically viable production of cellulosic biofuels requires operation at high solids loadings-on the order of 15 wt%. To this end we characterize Nature's ability to deconstruct and utilize mid-season switchgrass at increasing solid loadings using an anaerobic methanogenic microbiome. This community exhibits undiminished fractional carbohydrate solubilization at loadings ranging from 30 g/L to 150 g/L. Metaproteomic interrogation reveals marked increases in the abundance of specific carbohydrate-active enzyme classes. Significant enrichment of auxiliary activity family 6 enzymes at higher solids suggests a role for Fenton chemistry. Stress-response proteins accompanying these reactions are similarly upregulated at higher solids, as are ß-glucosidases, xylosidases, carbohydrate-debranching, and pectin-acting enzymes-all of which indicate that removal of deconstruction inhibitors is important for observed undiminished solubilization. Our work provides insights into the mechanisms by which natural microbiomes effectively deconstruct and utilize lignocellulose at high solids loadings, informing the future development of defined cultures for efficient bioconversion.


Assuntos
Lignina , Microbiota , Anaerobiose , Carboidratos , Lignina/metabolismo
9.
Int J Mol Sci ; 23(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35682749

RESUMO

Microbial conversion of biomass relies on a complex combination of enzyme systems promoting synergy to overcome biomass recalcitrance. Some thermophilic bacteria have been shown to exhibit particularly high levels of cellulolytic activity, making them of particular interest for biomass conversion. These bacteria use varying combinations of CAZymes that vary in complexity from a single catalytic domain to large multi-modular and multi-functional architectures to deconstruct biomass. Since the discovery of CelA from Caldicellulosiruptor bescii which was identified as one of the most active cellulase so far identified, the search for efficient multi-modular and multi-functional CAZymes has intensified. One of these candidates, GuxA (previously Acel_0615), was recently shown to exhibit synergy with other CAZymes in C. bescii, leading to a dramatic increase in growth on biomass when expressed in this host. GuxA is a multi-modular and multi-functional enzyme from Acidothermus cellulolyticus whose catalytic domains include a xylanase/endoglucanase GH12 and an exoglucanase GH6, representing a unique combination of these two glycoside hydrolase families in a single CAZyme. These attributes make GuxA of particular interest as a potential candidate for thermophilic industrial enzyme preparations. Here, we present a more complete characterization of GuxA to understand the mechanism of its activity and substrate specificity. In addition, we demonstrate that GuxA exhibits high levels of synergism with E1, a companion endoglucanase from A. cellulolyticus. We also present a crystal structure of one of the GuxA domains and dissect the structural features that might contribute to its thermotolerance.


Assuntos
Actinobacteria , Actinomycetales , Celulase , Biomassa , Celulase/química , Celulose/química , Humanos
10.
Elife ; 112022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35638899

RESUMO

The lives of microbes unfold at the micron scale, and their molecular machineries operate at the nanoscale. Their study at these resolutions is key toward achieving a better understanding of their ecology. We focus on cellulose degradation of the canonical Clostridium thermocellum system to comprehend how microbes build and use their cellulosomal machinery at these nanometer scales. Degradation of cellulose, the most abundant organic polymer on Earth, is instrumental to the global carbon cycle. We reveal that bacterial cells form 'cellulosome capsules' driven by catalytic product-dependent dynamics, which can increase the rate of hydrolysis. Biosynthesis of this energetically costly machinery and cell growth are decoupled at the single-cell level, hinting at a division-of-labor strategy through phenotypic heterogeneity. This novel observation highlights intrapopulation interactions as key to understanding rates of fiber degradation.


Assuntos
Celulossomas , Clostridium thermocellum , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Celulose/metabolismo , Celulossomas/metabolismo , Fibras na Dieta/metabolismo , Hidrólise
11.
Biotechnol Biofuels Bioprod ; 15(1): 23, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35227303

RESUMO

BACKGROUND: Terrestrial plant biomass is the primary renewable carbon feedstock for enabling transition to a sustainable bioeconomy. Consolidated bioprocessing (CBP) by the cellulolytic thermophile Clostridium thermocellum offers a single step microbial platform for production of biofuels and biochemicals via simultaneous solubilization of carbohydrates from lignocellulosic biomass and conversion to products. Here, solubilization of cell wall cellulosic, hemicellulosic, and pectic polysaccharides in the liquor and solid residues generated during CBP of poplar biomass by C. thermocellum was analyzed. RESULTS: The total amount of biomass solubilized in the C. thermocellum DSM1313 fermentation platform was 5.8, 10.3, and 13.7% of milled non-pretreated poplar after 24, 48, and 120 h, respectively. These results demonstrate solubilization of 24% cellulose and 17% non-cellulosic sugars after 120 h, consistent with prior reports. The net solubilization of non-cellulosic sugars by C. thermocellum (after correcting for the uninoculated control fermentations) was 13 to 36% of arabinose (Ara), xylose (Xyl), galactose (Gal), mannose (Man), and glucose (Glc); and 15% and 3% of fucose and glucuronic acid, respectively. No rhamnose was solubilized and 71% of the galacturonic acid (GalA) was solubilized. These results indicate that C. thermocellum may be selective for the types and/or rate of solubilization of the non-cellulosic wall polymers. Xyl, Man, and Glc were found to accumulate in the fermentation liquor at levels greater than in uninoculated control fermentations, whereas Ara and Gal did not accumulate, suggesting that C. thermocellum solubilizes both hemicelluloses and pectins but utilizes them differently. After five days of fermentation, the relative amount of Rha in the solid residues increased 21% indicating that the Rha-containing polymer rhamnogalacturonan I (RG-I) was not effectively solubilized by C. thermocellum CBP, a result confirmed by immunoassays. Comparison of the sugars in the liquor versus solid residue showed that C. thermocellum solubilized hemicellulosic xylan and mannan, but did not fully utilize them, solubilized and appeared to utilize pectic homogalacturonan, and did not solubilize RG-I. CONCLUSIONS: The significant relative increase in RG-I in poplar solid residues following CBP indicates that C. thermocellum did not solubilize RG-I. These results support the hypothesis that this pectic glycan may be one barrier for efficient solubilization of poplar by C. thermocellum.

12.
Carbohydr Polym ; 273: 118564, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560975

RESUMO

Xylan O-acetyltransferase 1 (XOAT1) is involved in O-acetylating the backbone of hemicellulose xylan. Recent structural analysis of XOAT1 showed two unequal lobes forming a cleft that is predicted to accommodate and position xylan acceptors into proximity with the catalytic triad. Here, we used docking and molecular dynamics simulations to investigate the optimal orientation of xylan in the binding cleft of XOAT1 and identify putative key residues (Gln445 and Arg444 on Minor lobe & Asn312, Met311 and Asp403 on Major lobe) involved in substrate interactions. Site-directed mutagenesis coupled with biochemical analyses revealed the major lobe of XOAT1 is important for xylan binding. Mutation of single key residues yielded XOAT1 variants with various enzymatic efficiencies that are applicable to one-pot synthesis of xylan polymers with different degrees of O-acetylation. Taken together, our results demonstrate the effectiveness of computational modeling in guiding enzyme engineering aimed at modulating xylan and redesigning plant cell walls.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Xilanos/metabolismo , Acetilação , Acetiltransferases/química , Acetiltransferases/genética , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Domínio Catalítico , Proteínas de Membrana/química , Proteínas de Membrana/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Xilanos/química
13.
Proteins ; 89(12): 1647-1672, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34561912

RESUMO

The biological and functional significance of selected Critical Assessment of Techniques for Protein Structure Prediction 14 (CASP14) targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modeled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas/química , Software , Sequência de Aminoácidos , Biologia Computacional , Microscopia Crioeletrônica , Cristalografia por Raios X , Análise de Sequência de Proteína
14.
Front Bioeng Biotechnol ; 9: 707749, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381766

RESUMO

Prior engineering of the ethanologen Zymomonas mobilis has enabled it to metabolize xylose and to produce 2,3-butanediol (2,3-BDO) as a dominant fermentation product. When co-fermenting with xylose, glucose is preferentially utilized, even though xylose metabolism generates ATP more efficiently during 2,3-BDO production on a BDO-mol basis. To gain a deeper understanding of Z. mobilis metabolism, we first estimated the kinetic parameters of the glucose facilitator protein of Z. mobilis by fitting a kinetic uptake model, which shows that the maximum transport capacity of glucose is seven times higher than that of xylose, and glucose is six times more affinitive to the transporter than xylose. With these estimated kinetic parameters, we further compared the thermodynamic driving force and enzyme protein cost of glucose and xylose metabolism. It is found that, although 20% more ATP can be yielded stoichiometrically during xylose utilization, glucose metabolism is thermodynamically more favorable with 6% greater cumulative Gibbs free energy change, more economical with 37% less enzyme cost required at the initial stage and sustains the advantage of the thermodynamic driving force and protein cost through the fermentation process until glucose is exhausted. Glucose-6-phosphate dehydrogenase (g6pdh), glyceraldehyde-3-phosphate dehydrogenase (gapdh) and phosphoglycerate mutase (pgm) are identified as thermodynamic bottlenecks in glucose utilization pathway, as well as two more enzymes of xylose isomerase and ribulose-5-phosphate epimerase in xylose metabolism. Acetolactate synthase is found as potential engineering target for optimized protein cost supporting unit metabolic flux. Pathway analysis was then extended to the core stoichiometric matrix of Z. mobilis metabolism. Growth was simulated by dynamic flux balance analysis and the model was validated showing good agreement with experimental data. Dynamic FBA simulations suggest that a high agitation is preferable to increase 2,3-BDO productivity while a moderate agitation will benefit the 2,3-BDO titer. Taken together, this work provides thermodynamic and kinetic insights of Z. mobilis metabolism on dual substrates, and guidance of bioengineering efforts to increase hydrocarbon fuel production.

15.
Appl Environ Microbiol ; 87(14): e0052421, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33990300

RESUMO

Caldicellulosiruptor species are hyperthermophilic, Gram-positive anaerobes and the most thermophilic cellulolytic bacteria so far described. They have been engineered to convert switchgrass to ethanol without pretreatment and represent a promising platform for the production of fuels, chemicals, and materials from plant biomass. Xylooligomers, such as xylobiose and xylotriose, that result from the breakdown of plant biomass more strongly inhibit cellulase activity than do glucose or cellobiose. High concentrations of xylobiose and xylotriose are present in C. bescii fermentations after 90 h of incubation, and removal or breakdown of these types of xylooligomers is crucial to achieving high conversion of plant biomass to product. In previous studies, the addition of exogenous ß-d-xylosidase substantially improved the performance of glucanases and xylanases in vitro. ß-d-Xylosidases are, in fact, essential enzymes in commercial preparations for efficient deconstruction of plant biomass. In addition, the combination of xylanase and ß-d-xylosidase is known to exhibit synergistic action on xylan degradation. In spite of its ability to grow efficiently on xylan substrates, no extracellular ß-d-xylosidase was identified in the C. bescii genome. Here, we report that the coexpression of a thermal stable ß-d-xylosidase from Thermotoga maritima and a xylanase from Acidothermus cellulolyticus in a C. bescii strain containing the A. cellulolyticus E1 endoglucanase significantly increased the activity of the exoproteome as well as growth on xylan substrates. The combination of these enzymes also resulted in increased growth on crystalline cellulose in the presence of exogenous xylan. IMPORTANCECaldicellulosiruptor species are bacteria that grow at extremely high temperature, more than 75°C, and are the most thermophilic bacteria so far described that are capable of growth on plant biomass. This native ability allows the use of unpretreated biomass as a growth substrate, eliminating the prohibitive cost of preprocessing/pretreatment of the biomass. They only grow under strictly anaerobic conditions, and the combination of high temperature and the lack of oxygen reduces the cost of fermentation and contamination by other microbes. They have been genetically engineered to convert switchgrass to ethanol without pretreatment and represent a promising platform for the production of fuels, chemicals, and materials from plant biomass. In this study, we introduced genes from other cellulolytic bacteria and identified a combination of enzymes that improves growth on plant biomass. An important feature of this study is that it measures growth, validating predictions made from adding enzyme mixtures to biomass.


Assuntos
Actinobacteria/enzimologia , Caldicellulosiruptor/metabolismo , Proteoma/metabolismo , Thermotoga maritima/enzimologia , Xilanos/metabolismo , Xilosidases/metabolismo , Actinobacteria/genética , Celobiose/metabolismo , Escherichia coli/genética , Thermotoga maritima/genética , Xilosidases/genética
16.
Biotechnol Biofuels ; 14(1): 55, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663584

RESUMO

BACKGROUND: Pretreatments are commonly used to facilitate the deconstruction of lignocellulosic biomass to its component sugars and aromatics. Previously, we showed that iron ions can be used as co-catalysts to reduce the severity of dilute acid pretreatment of biomass. Transgenic iron-accumulating Arabidopsis and rice plants exhibited higher iron content in grains, increased biomass yield, and importantly, enhanced sugar release from the biomass. RESULTS: In this study, we used intracellular ferritin (FerIN) alone and in combination with an improved version of cell wall-bound carbohydrate-binding module fused iron-binding peptide (IBPex) specifically targeting switchgrass, a bioenergy crop species. The FerIN switchgrass improved by 15% in height and 65% in yield, whereas the FerIN/IBPex transgenics showed enhancement up to 30% in height and 115% in yield. The FerIN and FerIN/IBPex switchgrass had 27% and 51% higher in planta iron accumulation than the empty vector (EV) control, respectively, under normal growth conditions. Improved pretreatability was observed in FerIN switchgrass (~ 14% more glucose release than the EV), and the FerIN/IBPex plants showed further enhancement in glucose release up to 24%. CONCLUSIONS: We conclude that this iron-accumulating strategy can be transferred from model plants and applied to bioenergy crops, such as switchgrass. The intra- and extra-cellular iron incorporation approach improves biomass pretreatability and digestibility, providing upgraded feedstocks for the production of biofuels and bioproducts.

17.
Comput Struct Biotechnol J ; 19: 214-225, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33425253

RESUMO

Microorganisms rely on protein interactions to transmit signals, react to stimuli, and grow. One of the best ways to understand these protein interactions is through structural characterization. However, in the past, structural knowledge was limited to stable, high-affinity complexes that could be crystallized. Recent developments in structural biology have revolutionized how protein interactions are characterized. The combination of multiple techniques, known as integrative structural biology, has provided insight into how large protein complexes interact in their native environment. In this mini-review, we describe the past, present, and potential future of integrative structural biology as a tool for characterizing protein interactions in their cellular context.

18.
Front Microbiol ; 12: 757741, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003001

RESUMO

Yarrowia lipolytica is known to be capable of metabolizing glucose and accumulating lipids intracellularly; however, it lacks the cellulolytic enzymes needed to break down cellulosic biomass directly. To develop Y. lipolytica as a consolidated bioprocessing (CBP) microorganism, we previously expressed the heterologous CBH I, CBH II, and EG II cellulase enzymes both individually and collectively in this microorganism. We concluded that the coexpression of these cellulases resulted in a metabolic drain on the host cells leading to reduced cell growth and lipid accumulation. The current study aims to build a new cellulase coexpressing platform to overcome these hinderances by (1) knocking out the sucrose non-fermenting 1 (Snf1) gene that represses the energetically expensive lipid and protein biosynthesis processes, and (2) knocking in the cellulase cassette fused with the recyclable selection marker URA3 gene in the background of a lipid-accumulating Y. lipolytica strain overexpressing ATP citrate lyase (ACL) and diacylglycerol acyltransferase 1 (DGA1) genes. We have achieved a homologous recombination insertion rate of 58% for integrating the cellulases-URA3 construct at the disrupted Snf1 site in the genome of host cells. Importantly, we observed that the disruption of the Snf1 gene promoted cell growth and lipid accumulation and lowered the cellular saturated fatty acid level and the saturated to unsaturated fatty acid ratio significantly in the transformant YL163t that coexpresses cellulases. The result suggests a lower endoplasmic reticulum stress in YL163t, in comparison with its parent strain Po1g ACL-DGA1. Furthermore, transformant YL163t increased in vitro cellulolytic activity by 30%, whereas the "total in vivo newly formed FAME (fatty acid methyl esters)" increased by 16% in comparison with a random integrative cellulase-expressing Y. lipolytica mutant in the same YNB-Avicel medium. The Snf1 disruption platform demonstrated in this study provides a potent tool for the further development of Y. lipolytica as a robust host for the expression of cellulases and other commercially important proteins.

19.
J Phys Chem B ; 124(44): 9870-9883, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33091304

RESUMO

Two-dimensional (2D) and 3D through-space 13C-13C homonuclear spin-diffusion techniques are powerful solid-state nuclear magnetic resonance (NMR) tools for extracting structural information from 13C-enriched biomolecules, but necessarily long acquisition times restrict their applications. In this work, we explore the broad utility and underutilized power of a chemical shift-selective one-dimensional (1D) version of a 2D 13C-13C spin-diffusion solid-state NMR technique. The method, which is called 1D dipolar-assisted rotational resonance (DARR) difference, is applied to a variety of biomaterials including lignocellulosic plant cell walls, microcrystalline peptide fMLF, and black widow dragline spider silk. 1D 13C-13C spin-diffusion methods described here apply in select cases in which the 1D 13C solid-state NMR spectrum displays chemical shift-resolved moieties. This is analogous to the selective 1D nuclear Overhauser effect spectroscopy (NOESY) experiment utilized in liquid-state NMR as a faster (1D instead of 2D) and often less ambiguous (direct sampling of the time domain data, coupled with increased signal averaging) alternative to 2D NOESY. Selective 1D 13C-13C spin-diffusion methods are more time-efficient than their 2D counterparts such as proton-driven spin diffusion (PDSD) and dipolar-assisted rotational resonance. The additional time gained enables measurements of 13C-13C spin-diffusion buildup curves and extraction of spin-diffusion time constants TSD, yielding detailed structural information. Specifically, selective 1D DARR difference buildup curves applied to 13C-enriched hybrid poplar woody stems confirm strong spatial interaction between lignin and acetylated xylan polymers within poplar plant secondary cell walls, and an interpolymer distance of ∼0.45-0.5 nm was estimated. Additionally, Tyr/Gly long-range correlations were observed on isotopically enriched black widow spider dragline silks.


Assuntos
Parede Celular , Seda , Animais , Lignina , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Peptídeos , Plantas , Aranhas
20.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32769195

RESUMO

Caldicellulosiruptor bescii secretes a large number of complementary multifunctional enzymes with unique activities for biomass deconstruction. The most abundant enzymes in the C. bescii secretome are found in a unique gene cluster containing a glycosyl transferase (GT39) and a putative peptidyl prolyl cis-trans isomerase. Deletion of the glycosyl transferase in this cluster resulted in loss of detectable protein glycosylation in C. bescii, and its activity has been shown to be responsible for the glycosylation of the proline-threonine rich linkers found in many of the multifunctional cellulases. The presence of a putative peptidyl prolyl cis-trans isomerase within this gene cluster suggested that it might also play a role in cellulase modification. Here, we identify this gene as a putative prsA prolyl cis-trans isomerase. Deletion of prsA2 leads to the inability of C. bescii to grow on insoluble substrates such as Avicel, the model cellulose substrate, while exhibiting no differences in phenotype with the wild-type strain on soluble substrates. Finally, we provide evidence that the prsA2 gene is likely needed to increase solubility of multifunctional cellulases and that this unique gene cluster was likely acquired by members of the Caldicellulosiruptor genus with a group of genes to optimize the production and activity of multifunctional cellulases.IMPORTANCECaldicellulosiruptor has the ability to digest complex plant biomass without pretreatment and have been engineered to convert biomass, a sustainable, carbon neutral substrate, to fuels. Their strategy for deconstructing plant cell walls relies on an interesting class of cellulases consisting of multiple catalytic modules connected by linker regions and carbohydrate binding modules. The best studied of these enzymes, CelA, has a unique deconstruction mechanism. CelA is located in a cluster of genes that likely allows for optimal expression, secretion, and activity. One of the genes in this cluster is a putative isomerase that modifies the CelA protein. In higher eukaryotes, these isomerases are essential for the proper folding of glycoproteins in the endoplasmic reticulum, but little is known about the role of isomerization in cellulase activity. We show that the stability and activity of CelA is dependent on the activity of this isomerase.


Assuntos
Proteínas de Bactérias/genética , Caldicellulosiruptor/genética , Celulose/metabolismo , Peptidilprolil Isomerase/genética , Proteínas de Bactérias/metabolismo , Caldicellulosiruptor/metabolismo , Deleção de Genes , Glicosilação , Peptidilprolil Isomerase/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...